1. (Hatcher, number 1.2.14) Consider the quotient of a cube I^{3} obtained by identifying each square face with the opposite square face via the right-handed screw motion consisting of a translation by one unit in the direction perpendicular to the face combined with a one-quarter twist of the face about its center point. Show this quotient space X is a cell complex with two 0-cells, four 1-cells, three 2-cells, and one 3-cell. Using this structure, show that $\pi_{1}(X)$ is the quaternion group of order eight.
2. (Hatcher, number 1.3.9) Show that if a path-connected, locally path-connected space X has a finite fundamental group, then every map $X \rightarrow S^{1}$ is null-homotopic.
3. (a) (Hatcher, number 1.3.10) Find all connected 2-sheeted and 3-sheeted covers of $S^{1} \vee S^{1}$, up to isomorphism of covering spaces without base points.
(b) Up to conjugacy, how many ways can \mathbb{F}_{4} embed into \mathbb{F}_{2} ?
4. (Hatcher, number 1.3 .14) Find all the connected covering spaces of $\mathbb{R} \mathbb{P}^{2} \vee \mathbb{R}^{2}$.
5. Let X be the space obtained by identifying the north and south poles of S^{2}. Describe all coverings spaces of X.
6. (Hatcher, number 1.3.18) For a path-connected, locally path-connected, and semi-locally simply-connected space X, call a path-connected covering space $\widetilde{X} \rightarrow X$ abelian if it is normal and has abelian deck transformation group. Show that X has an abelian covering space that is a covering space of every other abelian covering space of X, and that such a 'universal abelian cover' is unique up to isomorphism. Describe the covering space explicitly for $S^{1} \vee S^{1}$ and $S^{1} \vee S^{1} \vee S^{1}$.
7. Let G be a path-connected topological group.
(a) Show that any path-connected covering space of G is also a topological group.
(b) Show that a covering space of G that is not path-connected is not necessarily a topological group.
8. Describe all normal covers of the Klein bottle (a cell complex for the Klein bottle is available at its wikipedia page)
9. For $n \geq 2$, show that $\pi_{n}\left(X, x_{0}\right)$ is abelian.
